M.Sc. in Botany

There shall be two academic years in one complete session of M.Sc. Each academic year will have TWO Semesters. Each Semester will have four Theory Papers of 100 marks each and two practical Papers of 100 mark each. In fourth Semester, instead of two practical Papers, there will be one Practical and one Dissertation of 100 marks each.

Each Theory paper will have 80 marks for examination and 20 marks for internal assessment. The pass marks will be 45 in each paper. The total marks for M.Sc. (all four semesters included) should be 2400.

M.Sc. BOTANY PART I

PAPER I (Theory) Microbiology Full marks 100 (80+20) PAPER II (Theory) Fungi and Algae Full Marks 100 (80+20) PAPER III (Theory) Bryophytes and Pteridophytes Full Marks 100 (80+20) PAPER IV (Theory) Gymnosperms Full Marks 100 (80+20) PAPER V Practical

PAPER VI

Practical

Full Marks 100

SEMESTER II

PAPER VII (Theory)

Cell biology and Genetics

Full Marks 100 (80+20)

PAPER VIII (Theory)

Molecular Biology

Full Marks 100 (80+20)

PAPER IX (Theory)

Taxonomy

Full Marks 100 (80+20)

PAPER X (Theory)

Ecology

PAPER XI

Practical

Full Marks 100

PAPER XII

Practical

Full Marks 100

TOTAL = 1200

M.Sc. BOTANY PART II

SEMESTER III

PAPER XIII (Theory)

Embryology and Anatomy

Full Marks 100 (80+20)

PAPER XIV (Theory)

Genetic Engineering, Biotechnology and Plant Tissue

Culture

Full Marks 100 (80+20)

PAPER XV (Theory)

Plant Physiology and Metabolism

Full Marks 100 (80+20)

PAPER XVI

Plant Biochemistry

PAPER XVII

Practical

Full Marks 100

PAPER XVIII

Practical

Full Marks 100

SEMESTER IV

PAPER XIX (Theory)

Environmental Biology

Full Marks 100 (80+20)

PAPER XX (Theory)

 Plant Resource utilization, Biostatistics and Biodiversity

 Conservation

 Full Marks 100 (80+20)

 PAPER XXI (Theory)

 Special Paper I

 PAPER XXII (Theory)

 Special Paper II

 PAPER XXIII

 Practical

 Full Marks 100

 PAPER XXIV

 Project

 Full marks 100

 TOTAL MARKS=1200

Total Marks for M.Sc. part I and II = 2400

M.Sc. PART I

SEMESTER I

<u>PAPER I</u>

MICROBIOLOGY

1. Salient features of Archaebacteria, Eubacteria and Cyanobacteria	06
2. Structure of bacterial cell	06
3. Nutrition, reproduction and Economic Importance of Bacteria	04

4. Bacterial recombination: conjugation, transduction and transformation	10	
5. Structure and multiplication of Bacteriophage and TMV	08	
6. Structure and multiplication of viruses of bacteria	06	
7. Modes of transmission of viruses in plants	04	
8. Economic importance of viruses	02	
9. A general account of Mycoplasma and study of plant diseases:	02	
Grassy shoot of sugarcane, Sesamum phylloidi, Little leaf of Brinjal	04	
	04	
Total lectures 50		
PAPER II		
FUNGI AND ALGAE		
GROUP – A		
1. Outline classification of fungi as proposed by Alexopoulus and Mims, 1979	03	
2. Heterothallism, heterokaryosis, parasexuality	06	
3. General account of Mastigomycotina, Zygomycotina, Ascomycotina,		
Basidiomycotina and Deuteromycotina	06	
4. Symptoms, causal organisms and control measures of the following types of		
Fungal diseases: (a) Blights, (b) Mildews, (c) Smuts, (d) Rusts		
(e) Wilts, (f) Rots	06	
5. Mycorrhizae and Lichens: general account and its importance	02	
6. Economic Importance of Fungi	02	
GROUP – B		
1. Algae in diversified habitats (terrestrial, freshwater, marine)	04	
2. Outline classification of algae as proposed by (a) Fritsch (1935), (b) Smith (1950)	03	
3. Range of thallus structure and reproduction in (a) Cyanophyta (b) Chlorophyta		

(C) Charophyta, (d) Bacillariophyta, (e) Phaeophyta, (f) Rhodophyta 12

4. Evolutionary trends in Algae	
5. Economic Importance of Algae: Algal Blooms, Biofertilizers, as food and feed	
In industry	

04

04

PAPER III

BRYOPHYTES AND PTERIDOPHYTES

GROUP – A

1.	General features, origin and classification of Bryophytes	02
2.	Salient Features of the following orders:	
	(a) Sphaerocarpales	02
	(b) Marchantiales	02
	(c) Jungermanniales	02
	(d) Anthocerotales	04
	(e) Sphagnales	02
	(f) Funariales	04
	(g) Polytrichales	04
3.	Evolutionary trends in Bryophytes and origin of land plants	02

GROUP – B

1. Classification of Pteridophytes	02
2. Salient features of the following orders:	
(a) Psilophytales	03
(b) Psilotales	03
(c) Lepidodendrales	03
(d) Isoetales	03
(e) Sphenophyllales	03
(f) Ophiolglossales	03
(g) Osmundales	03
(h) Filicales	03
3. Origin and evolution of sphorophytes in Pteridophytes- Telome concept	03
4. Heterospory and seed habit	04

Total lectures 57

PAPER IV

GYMNOSPERMS

1.	Gymnosperms: an introduction	02
2.	Classification of Gymnosperms and their distribution in India as proposed by Pant	04
3.	Salient features of Cycadales, Ginkgoales, Coniferales, Ephedrales,	
	Welwitschiales, Gnetales	18
4.	Fossils: Mode of preservation, geological time-table, Indian fossils	05
5.	Salient features of Pteridospermales: Lyginopteridaceae,	
	Medullosaceae, Caytoniaceae, Glossopteridaceae	12
6.	Salient features of Cycadeoidales and Cordaitales	10

Total lectures 51

<u>PAPER V</u>

PRACTICAL

<u>PAPER VI</u>

PRACTICAL

SEMESTER II

PAPER VII

CELL BIOLOGY AND GENETICS

GROUP – A (CELL BIOLOGY)

1.	Structure of model membrane, lipid bilayer and membrane protein diffusion, osmo ion channels, active transport, membrane pumps, mechanism of sorting and regula	
	of intracellular transport, electrical properties of membranes.	12
2.	Structure of nucleus and nuclear wall	04
3.	Other cellular organelles: structure and functions of microbodies, Golgi apparatus, lysosomes, endoplasmic reticulum.	04
4.	Cell cycle: Mechanism and control of cell division	08
5.	pseudoiso types) and packaging of DNA, molecular organization of centromere and telomere, nucleolus and ribosomal RNA genes, Euchromatin and heterochromatin, karyotype analysis, banding patterns, specialized types of chromosome, Polytene,	
	Lampbrush, B chromosome and sex chromosome pairing.	20

GROUP – B (GENETICS)

- Mutations : spontaneous and induced mutation ,physical and chemical mutagens , molecular basis of gene mutation, transposable elements in prokaryotes and eukaryotes, mutation induced by transposons, site –directed mutagenesis, DNA damage And repair mechanisms, inherited human diseases and defects in DNA repair, Initiations of cancer at cellular level, proto – oncogenes and oncogenes.
- Polyploidy: auto and allopolyploidy, Cytonogetics of aneuploids and structural heterozygotes : effects of aneuploidy on phenotype in plants ,transmission of monosomic and trisomic and their use in chromosome mapping of diploid and polyploid species, breeding behaviour and genetics of structural heterozygotes ,translocation tester sets ,Robertsonian translocation, B-A translocations. Origin, occurrence, production of autopolyploids, chromosome and chromatin segregation, allopolyploids, genome constitution and characterization of Trisomics and Monosomics.
- Chromosomal Aberration: Structural and Numerical alterations in chromosomes, meiotic behavior of duplication, deficiency, inversion and translocation heterozygotes. 04

Total lectures 84

PAPER VIII

MOLECULAR BIOLOGY

- DNA replication, repair and recombination (Unit of replication, enzymes involved, replication origin and replication fork, fidelity of replication, extrachromosomal replicons, DNA damage and repair mechanisms, homologous and site-specific recombination).
- 2. **RNA synthesis and processing** (transcription factors and machinery, formation of initiation complex, transcription activator and repressor, RNA polymerases, capping, elongation, and termination, RNA processing, RNA editing, splicing, and polyadenylation, structure and function of different types of RNA, RNA transport). 10
- Protein synthesis and processing (Ribosome, formation of initiation complex, initiation factors and their regulation, elongation and elongation factors, termination, genetic code, aminoacylation of tRNA, tRNA-identity, aminoacyl tRNA synthetase, and translational proof-reading, translational inhibitors, Post- translational modification of proteins).

- Control of gene expression at transcription and translation level (regulating the expression of phages, viruses, prokaryotic and eukaryotic genes, role of chromatin in gene expression and gene silencing).
- 5. **Cell signaling** Hormones and their receptors, cell surface receptor, signaling through Gprotein coupled receptors, signal transduction pathways, second messengers, regulation of signaling pathways, bacterial and plant two-component systems, light signaling in plants, bacterial chemotaxis and quorum sensing. 05
- 6. **Techniques in cell biology:** Immunotechniques, in situ hybridization to locate transcripts in cell types, FISH, GISH, Confocal microscopy. 05

PAPER IX

TAXONOMY

GROUP – A

1.	Taxonomy: definition, purpose and scope	06
2.	Literature on taxonomy	06
3.	Origin of angiosperms	04
4.	Classification of angiosperms : Benthem and Hooker system, Engler and Prantl	
	System, Hutchinson system and Takhtajan system of classification and its	
	Comparison	10
5.	Plant nomenclature : need and scope, history of nomenclature, ICBN- principles, r	ules
	and recommendations	08
6.	Taxonomic evidences: anatomy in relation to taxonomy, palynology in relation to	
	taxonomy, Embryology in relation to taxonomy and cytology in relation to taxonomy	my08
7.	Modern trends in plant taxonomy	06
8.	Study of plants of different families available in Jharkhand: Ranunculaceae,	
	Brassicaceae, Capparidaceae, Meliaceae, Leguminoceae, Apiaceae, Rubiaceae,	
	Asclepiadaceae, Catharanthaceae, Convolvulaceae, Solanaceae, Scrophulariaceae,	1
	Acanthaceae, Lamiaceae, Verbenaceae, Poaceae, Cyperaceae	20

PAPER X

<u>ECOLOGY</u>

1. Climate, soil and vegetation pattern of the world: Life zones: major biomes and major vegetation and soil types of the world.

2.	Vegetation organization: Concepts of community and continuum; analysis of	
	communities; community coefficients; inter specific associations, concepts of	
	Ecological niche	10
3.	Vegetation development: mechanism of ecological succession; changes in ecosyst	em
	properties during succession ()6
4.	Ecosystem organization; structure and functions; primary productions(methods or	f
	measurement, global pattern, controlling factors); global bio-geo-chemical cycles	of
	C, N, P, S; mineral cycles (pathways, processes, budgets) in terrestrial and aquatic	
	Ecosystems	10
5.	5. Biological diversity: concept and levels; role of biodiversity in ecosystem functions	
	and stability; IUCN categories of threat	07
6.	Phytogeography	06

<u>PAPER XI</u>

PRACTICAL

PAPER XII

PRACTICAL

M.Sc. PART II

SEMESTER III

PAPER XIII

EMBRYOLOGY AND ANATOMY

GROUP – A

1.	Microspore and Microsporogenesis; Megaspore and Megasporogenesis	04
2.	Development of male and female gametophyte	06
3.	Germination of pollen grains, path of pollen tube and its entry	
	Into embryo sac, double fertilization and pollen-pistil interaction	04
4.	Endosperm and its types, morphological nature of endosperm	02
5.	Embryogenesis, development of monocot and dicot embryo	04
6.	Apomixis and polyembryony	04

 Morphogenesis and organogenesis in plants: Organization of shoot and root apical meristem; shoot and root development; leaf development and phyllotaxy; transition to flowering, floral meristems and floral development.

GROUP – B

1.	Cambium: normal and anomalous secondary growth	06
2.	Ecological Anatomy	06
3.	Periderm	02
4.	Mechanical tissue and their distribution	04

Total lectures 46

PAPER XIV

GENETIC ENGINEERING AND BIOTECHNOLOGY AND PLANT TISSUE CULTURE

GROUP – A

1.	Biotechnology: basic concepts, principles and scope	04
2.	Recombinant DNA-technology: gene cloning, principle and techniques	08
3.	DNA-fingerprinting, Polymerase chain reaction	08
4.	Genetic engineering of plants: aims, strategies for development	
	Of Transgenic plants with suitable examples	08
5.	Agrobacterium- the natural genetic engineer, T-DNA and transposon	
	Mediated gene tagging	06

GROUP – B

1.	Plant tissue culture: history, techniques, embryogenesis,	
	Micro propagation and its application	12
2.	Anther, Embryo, Endosperm culture and their significance	10

Total lectures 56

PAPER XV

PLANT PHYSIOLOGY AND METABOLISM

Absorption of water: mechanism of active and passive absorption; factors affecting	
water absorption	05
Ascent of sap: mechanism	02
Transpiration: stomatal structure and movement; guttation; factors	
Affecting the rate of transpiration	05
Absorption of minerals: anatomy of root, soil profile and soil water, mechanism of absorption: active and passive; factors affecting absorption, Mineral nutrition of pla deficiency symptoms and diseases, macro and micro nutrients, chelating agents Translocation of solutes: substances translocated in phloem, direction and speed of translocation, mechanism of phloem transport, transport of ions; factors affecting	10
translocation	06
Stress physiology – Responses of plants to biotic (pathogen and insects) and abiotic (water, temperature and salt) stresses.	05
Plant growth regulators (Phytohormones): structure, biosynthesis, physiological responses and mechanism of action of Auxins, Gibberellins, Cytokinins, Ethylene	
Abscissic acid	10
Sensory photobiology - Structure, function and mechanisms of action of phytochron cryptochromes and phototropins; stomatal movement; photoperiodism and biologic	

06

PAPER XVI

1.

2.

3.

4.

5.

6.

7.

8.

BIOCHEMISTRY

clocks.

- 1. Structures & function of primary metabolites: Carbohydrates, proteins, fats. 06
- 2. Structures and function of secondary metabolites : Terpenoids, phenols & alkaloids. 02
- 3. Photosynthesis : Pigment system, Photophosphorylation, Calvin cycle, Hatch & Slack pathway, CAM pathway, photorespiration, factors affecting rate of photosynthesis. 08
- 4. Respiration : Glycolysis, Fermentation, Kreb's cycle, Electron Transport System, Hexose monophosphate shunt, theories of phosphorylation, factors affecting rate of respiration. 08
- 5. Enzymes : nature properties & classification, enzyme energetic, mode & mechanism of action, factors affecting enzyme activities. 06
- 6. Nitrogen metabolism: amino acid metabolism, protein synthesis in pro & eukaryotes, genetic code polypeptide chain, nitrogen fixation in free living and symbiotic bacteria.06
- 7. Fats : nature & classification; biosynthesis, degradation of fats : beta-oxidation & alphaoxidation, glyoxylate cycle. 06 02
- 8. Bioenergetics.

Total lectures 42

PAPER XVII

PRACTICAL

PAPER XVIII

PRACTICAL

SEMESTER IV

PAPER XIX

ENVIRONMENTAL BIOLOGY

1.	Environment and pollution: general concept and impact on human beings	04
2.	Air, water and soil pollution: kinds, sources; quality parameters: effect	
	On plants and ecosystems and control measures	14
3.	Climate change: Greenhouse gases (CO2, CH4, N2O, CFCs; sources, trends and role)	
	Ozone layer and ozone hole	10
4.	Ecosystem stability: Concept (resistance and resilience); ecological perturbations	
	(Natural and anthropogenic) and their impact on plants and ecosystems,	
	Ecosystem restoration	80
5.	Ecological management: concepts; sustainable developments; sustainability	
	Indicators	06
6.	Energy resources: conventional and non-conventional	06

Total lectures 48

PAPER XX

PLANT RESOURCE UTILIZATION, BIOSTATISTICS AND BIODIVERSITY CONSERVATION

GROUP – A

- 1. Origin, evolution, botany, cultivation and uses of ; (a) food crops, (b) fiber, forage and Fodder crops, (c) medicinal and aromatic plants, (d) vegetables and oil yielding crops 08
- 2. Plants yielding timber, tannins, dyes, resins and fruits 05
- 3. Plants used as revenue trees for shade, pollution control and aesthetics 02

GROUP – B

1.	Presentation of biological data in tables, graphs, histograms and pie chart	04
2.	Concept of statistical analysis in biology	04
3.	Preliminary ideas about mean, mode, median, standard deviation	
	Probability, correlation, trends	04

GROUP – C

1.	Principles of conservation	06
2.	Strategies for conservation: in situ conservation; international efforts and Indian initiatives;	
	Protected areas in India- sanctuaries, national parks, biosphere reserves, wet lands	5,
	Mangroves and coral reefs for conservation of wild biodiversity	12
3.	Strategies for conservation: ex situ conservation; principles and practices; botanica gardens,	ıl
	Field gene banks, seed banks; in vitro repositories, cryo banks; general account of t activities of Botanical Survey of India(BSI), National Bureau of Plant Genetic Resources(NBPGR), Indian Council of Agricultural research (ICAR), Council of Scient	
	and industrial research (CSIR), and the department of biotechnology (DBT) for	
	conservation	10
4.	Plant biodiversity: concept, status in India, utilization and concerns	05
	Total lectures 60	

PAPER XXI

SPECIAL PAPER I

<u> PLANT PATHOLOGY – I</u>

1.	History and modern approaches to plant pathology	02
2.	General symptoms of plant diseases caused by fungi	04
3.	Mode of attack:	
	(a) Enzymes: role of enzymes in pathogenesis	
	(b) Toxins: types and their role in pathogenesis	08
4.	Physiology of diseased plants with special reference to:	
	(a) Osmo-regulation	

(b) Respiration

	(c) Photosynthesis	
	(d) Nitrogen and phenol metabolism	14
5.	Mechanism of defense:	
	(a) Structural defense mechanism	
	(b) Biochemical defense mechanism	08
6.	Control measures of plant diseases:	
	(a) Cultural practices	
	(b) Biological	
	(c) Chemical control (fungicide)	
	(d) Plant quarantine	14

PAPER XXII

SPECIAL PAPER II

PLANT PATHOLOGY - II

- 1. Important plant diseases caused by the fungi (symptoms, etiology and control):
 - (a) Downy mildew of maize
 - (b) Powdery mildew of pea
 - (c) Loose smut of wheat
 - (d) Covered smut of barley
 - (e) Whip-smut of sugarcane
 - (f) Linseed rust
 - (g) Tikka disease of groundnut
 - (h) Wilt of arhar
 - (i) Blast of rice
 - (j) False smut of rice
 - (k) Red rot of sugarcane
 - (I) Early blight of potato
- 2. Important diseases of Bacteria:
- 3. Important viral diseases:
- 4. Important diseases caused by Nematodes:

PAPER XXIII

24

PRACTICAL

PAPER XXIV

<u>PROJECT</u>